- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aziz, Michael_J (2)
-
Fell, Eric_M (2)
-
Gordon, Roy_G (2)
-
Jing, Yan (2)
-
Amini, Kiana (1)
-
Bahari, Meisam (1)
-
George, Thomas_Y (1)
-
Jin, Shijian (1)
-
Michalak, P_Winston (1)
-
Vina‐Lopez, Lucia (1)
-
Wu, Min (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Aqueous organic redox flow batteries are promising candidates for large‐scale energy storage. However, the design of stable and inexpensive electrolytes is challenging. Here, we report a highly stable, low redox potential, and potentially inexpensive negolyte species, sodium 3,3′,3′′,3′′′‐((9,10‐anthraquinone‐2,6‐diyl)bis(azanetriyl))tetrakis(propane‐1‐sulfonate) (2,6‐N‐TSAQ), which is synthesized in a single step from inexpensive precursors. Pairing 2,6‐N‐TSAQ with potassium ferrocyanide at pH=14 yielded a battery with the highest open‐circuit voltage, 1.14 V, of any anthraquinone‐based cell with a capacity fade rate <10 %/yr. When 2,6‐N‐TSAQ was cycled at neutral pH, it exhibited two orders of magnitude higher capacity fade rate. The great difference in anthraquinone cycling stability at different pH is interpreted in terms of the thermodynamics of the anthrone formation reaction. This work shows the great potential of organic synthetic chemistry for the development of viable flow battery electrolytes and demonstrates the remarkable performance improvements achievable with an understanding of decomposition mechanisms.more » « less
-
Jin, Shijian; Fell, Eric_M; Vina‐Lopez, Lucia; Jing, Yan; Michalak, P_Winston; Gordon, Roy_G; Aziz, Michael_J (, Advanced Energy Materials)Abstract A highly stable phosphonate‐functionalized viologen is introduced as the redox‐active material in a negative potential electrolyte for aqueous redox flow batteries (ARFBs) operating at nearly neutral pH. The solubility is 1.23mand the reduction potential is the lowest of any substituted viologen utilized in a flow battery, reaching −0.462 V versus SHE at pH = 9. The negative charges in both the oxidized and the reduced states of 1,1′‐bis(3‐phosphonopropyl)‐[4,4′‐bipyridine]‐1,1′‐diium dibromide (BPP−Vi) effect low permeability in cation exchange membranes and suppress a bimolecular mechanism of viologen decomposition. A flow battery pairing BPP−Vi with a ferrocyanide‐based positive potential electrolyte across an inexpensive, non‐fluorinated cation exchange membrane at pH = 9 exhibits an open‐circuit voltage of 0.9 V and a capacity fade rate of 0.016% per day or 0.00069% per cycle. Overcharging leads to viologen decomposition, causing irreversible capacity fade. This work introduces extremely stable, extremely low‐permeating and low reduction potential redox active materials into near neutral ARFBs.more » « less
An official website of the United States government
